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Abstract
Natural forms, often characterized by irregularity and roughness, have a unique 
complexity that exhibit self-similarity across different spatial scales or levels of 
magnification. Our visual system is remarkably efficient in the processing of natural 
scenes and tuned to the multi-scale, fractal-like properties they possess. The fractal-
like scaling characteristics are ubiquitous in many physical and biological domains, 
with recent research also highlighting their importance in aesthetic perception, par-
ticularly in the visual and, to some extent, auditory modalities. Given the multitude 
of fractal-like scaling manifestations, we explore potential commonalities in the way 
they might affect aesthetic preference within and across different physical and sen-
sory domains. We use a range of visual and tactile stimuli to explore the equiva-
lence of fractal-scaling effects on aesthetic preferences within and across visual and 
tactile modalities. Our results suggest that, despite some superficial differences, the 
underlying dimensional structure mediating the preference across the two domains 
is remarkably similar. The qualitative nature of this dimensional structure as well as 
suggestions for future research are discussed.

Keywords Fractals · Aesthetics · Aesthetic primitives · Visual preference · Tactile 
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1 Introduction

Our experience of the world is multimodal and integrated across different sensory 
modalities, yet the sensory and perceptual processing is thought to occur in distinct 
unisensory brain areas prior to the later integration in multisensory areas. In addi-
tion, the studies of perceptual phenomena across multiple sensory modalities alike 
are preoccupied with the neural underpinnings and computational models of pro-
cessing characteristics, largely ignoring the phenomenology and qualitative aspects 
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of perceptual experience (Albertazzi 2015a). The predominant focus on processing 
also takes for granted the nature of information that drives our perceptual systems 
and the insights concerning the structure and primitives of perceptual  experience 
(Cutting 1987; Albertazzi 2015b, 2018).

Here, we explore the aesthetic qualities related to the fractal-scaling characteris-
tics in a variety of visual and tactile surfaces. Fractal-scaling is a mathematical term 
to describe irregular geometrical structures whose shape appear to be self-similar 
regardless of the level of magnification at which it is viewed. Fractals are created by 
an infinite recursion of a simple process and their appearance embodies the struc-
tural complexity of dynamic systems that create them: from the erosion of coasts to 
the growth of crystals and formation of galaxies. Importantly, unlike many visual 
and tactile objects in conventional psychophysics, fractals are non-Euclidian and 
defined as shapes “made of parts similar to the whole in some way” (Mandelbrot 
1977). Fractal-scaling properties reflect the relative structural density at coarse and 
fine spatial scales thus capturing the  relational structural qualities of both natural 
and synthetic patterns, images and surfaces that they are associated with.

Despite both the high ecological validity of fractal structures and the prominent 
role that the scale-specific processing plays in various sensory modalities, the frac-
tal-scaling framework is largely absent in both research and theory of perceptual 
processing and experience. Here, we apply this framework to directly compare the 
generalizability of aesthetic qualities of fractal surfaces and their similarity across 
the visual and tactile sensory domains. We do so in the complementary contexts of 
natural scene statistics and scale-specific sensory analysis to explore the potential of 
fractal geometry as a structural primitive for the cross-modal aesthetic experience. 
Remarkably, the aesthetic evaluations of fractal-scaling properties are highly similar 
across the two sensory domains, suggesting the strong link between fractal-scaling 
statistics and perception of dynamic, expressive and affective aspects of sensory 
stimulations in different modalities.

2  Nature, Natural Scene Statistics and Aesthetic Appeal

From ragged mountain ranges to calm, pristine lakes—natural scenes come in a 
tremendous variety of different forms and sizes (Fig. 1). Despite this diversity, the 
underlying spatial structure of natural scenes exhibit a remarkable degree of statisti-
cal consistency. In an image of natural scenes, one typically finds that nearby regions 
are more similar in their spatial properties, such as luminance intensity, chromaticity 
and orientation, compared to more distal regions.

One commonly used method of representing the distance-dependent variations 
in the intensity of individual points in natural scenes is through the shape of their 
spatial frequency amplitude spectra. The three rows in Fig.  2a depict the original 
and spatial frequency filtered versions of natural scenes from Fig.  1. When natu-
ral scenes are decomposed into different spatial frequency components as illustrated 
in the middle (low spatial frequency filtered images) and bottom rows (high spatial 
frequency filtered images), one finds that the relative amplitude of intensity vari-
ations is inversely related to the spatial frequency (f) as illustrated in Fig. 2b. The 
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power law relationship, defined by the function 1/fα is characterised by the ampli-
tude spectrum slope (α) which, on average, ranges from .8 to 1.5 (peaking at 1.2) for 
images of natural scenes (Field and Brady 1997). This particular property is thought 
to reflect the scale invariance of natural scenes, or the notion that approximately 
equivalent amounts of spatial structure can be found as we zoom in or out between 
the coarse or fine spatial scales (i.e. low and high spatial frequency respectively).

The ubiquity of amplitude spectra characteristics across natural images has 
fuelled a rising interest in how they are processed by the human visual system (Cut-
ting and Garvin 1987; Knill et al. 1990; Tadmor and Tolhurst 1994; Billock 2000; 
Hansen and Hess 2006). Spehar et al. (2015) used a series of psychophysical meth-
ods to measure subjects’ discrimination and detection sensitivity to images with a 

Fig. 1  Examples of images of natural scenes. All scenes shown are vastly different in their superficial 
appearance, but they share a common underlying statistical structure

Fig. 2  a The top row shows the original natural scene images from Fig. 1. The middle and  bottom rows 
show each image filtered for low and high spatial frequencies, respectively. b Amplitude spectra of the 
original images
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range of spatial frequencies and amplitude spectrum slopes. Consistent with the 
previous studies (Cutting and Garvin 1987; Knill et al. 1990; Tadmor and Tolhurst 
1994; Hansen and Hess 2006) they found the best visual discrimination sensitivity 
for ‘natural’ amplitude spectrum slopes compared to shallower and steeper ampli-
tude spectrum slopes. This finding was further supported by fMRI analyses in which 
blood oxygen level dependent (BOLD) responses peaked for images with natural 1/f 
amplitude spectra (Isherwood et al. 2017). Our visual system’s tuning and adapta-
tion to these fractal-scaling statistics offer a strong account for how diverse natural 
scenes are identified and processed so efficiently.

The natural 1/f amplitude spectrum has also been considered a potential factor 
that drives aesthetic appeal. This idea has been reinforced by findings that a wide 
range of artworks from different genres, periods and geographical origin share 
remarkable commonalities in their spatial image structure—mirroring that found in 
natural scenes (Redies 2015; Redies et al. 2007a, b). However, in order to eliminate 
the potentially confounding effects of semantics attached to artworks, a number of 
studies have also used synthetic filtered noise images with parametrically varying 
amplitude spectra characteristics. Examples of synthetic images with parametric 
variations in their amplitude spectrum slope (α) are shown in Fig. 3. Spehar et al. 

Fig. 3  Synthetic 1/f noise images with α falloffs at the values indicated in each inset
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(2016) presented these synthetic images in a two-alternative forced-choice (2AFC) 
paired comparison task, in which subjects indicated which of two images of dif-
ferent α they preferred. Repeated variations of this procedure have found a robust 
average preference for images with intermediate amplitude spectrum slope values 
that are most characteristic of natural scenes (Spehar et al. 2003, 2015, 2016; Vieng-
kham and Spehar 2018).

Explanations as to why there is such a robust visual preference for images within 
the natural statistics range are diverse and allude upon notions such as the inher-
ent universal preference for intermediate complexity (Berlyne 1970, 1971), process-
ing fluency (Reber et al. 2004), and an evolved sensitivity to the low-level statistics 
of natural scenes (Spehar et al. 2015; Isherwood et al. 2017). Different theoretical 
accounts notwithstanding, it is also interesting to consider a somewhat neglected 
question of what aspects of variations in the amplitude spectrum could be driving 
the aesthetic preference in these images. Namely, the decomposition of an image 
into its spatial frequency components through Fourier analysis is unselective in that 
everything in the stimulus is transformed and then reconstructed. However, while 
it is often assumed that visual processing is generally optimised to use all avaliable 
cues to understanding the structure of the environment, it is highly unlikely that eve-
rything in a given spatial frequency range is equally informative. While the initial 
focus of our own work (Spehar et al. 2015, 2016) and that of others (Graham and 
Field 2007; Graham and Redies 2010) were the overall photometric characteristics 
of images, it is possible that some other scale-specific spatial variations could be 
playing a role as well.

3  Photometric Versus Geometric Properties of Natural Scenes

The scale invariance of natural scenes can also be captured by a geometric scal-
ing parameter known as the fractal dimension (D) which focuses on the boundary 
edge between the paint-filled regions and empty regions in an image. One frequently 
used method to quantify fractal dimension, the box-counting technique (Fig.  4), 
performs the scaling examination by covering an image with a mesh of identi-
cal squares (‘boxes’) of varying side lengths (L). The technique simply counts the 

Fig. 4  Demonstration of the box counting technique at three different values of L. As L decreases from 
left to right, the number of boxes (N) needed to measure the length of a boundary edge increases follow-
ing a power law relationship defined by D
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number of squares, N, that contain part of the boundary edge. This count is repeated 
for increasingly small squares within the mesh. Reducing the box size (i.e. smaller 
values of L) is equivalent to examining the image at finer spatial frequencies and 
N assesses the amount of space containing the pattern boundaries at these spatial 
scales. The scale-invariance of the fractal pattern appears through the power law 
relationship N ~ (1/L)D (where the exponent D is the fractal dimension) and is quan-
tified by plotting log N as a function of log (1/L). While a detailed comparison of 
the two techniques can be found elsewhere (Bies et  al. 2016; Fairbanks and Tay-
lor 2011; Spehar and Taylor 2013), the amplitude spectrum slope alpha and fractal 
dimension D values are inversely related: higher alpha value is equivalent to low D 
value and vice versa.

It is important to emphasise that fractal dimension calculations are always per-
formed by considering the degree of spatial variations along the edges of binarized, 
black-and-white regions in an image. Therefore in order to apply a box-counting 
procedure on the synthetic images varying in their amplitude spectra characteristics 
as illustrated in the first column in Fig. 5, these images are first thresholded with 
respect to their mean luminance. During the thresholding procedure, all pixels that 
have a value higher than the mean luminance are assigned as white and all pixels 
with values below the mean are assigned as black resulting in images shown in the 
second column in Fig. 5. Edge only image variations are generated by extracting the 

Fig. 5  Variations of 1/f synthetic noise images. From left to right columns, this figure shows the origi-
nal grayscale image, the thresholded (or two-tone) image, the edge extracted image and the 3D terrain 
model. All images increase in their measured fractal dimension (D) from top to bottom
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edges from the thresholded black-and-white images as illustrated in the third column 
in Fig. 5.

Conventionally, the fractal-like variations in grayscale images, due to their sur-
face-texture appearances, are referred to as ‘two-dimensional’ (2D) fractals, whereas 
the thresholded and edge patterns are referred to as ‘one-dimensional’ (1D) fractals 
because their fractal characteristics are determined by variations in fractal contours. 
In addition, the same type of fractal variations can be extended to additional dimen-
sions as illustrated with the fractal terrains depicted in the last column in Fig.  5. 
Here the intensity values of pixels in the grayscale images are plotted as the terrain 
height, creating three-dimensional (3D) surfaces.

It is important to emphasise that the thresholding, edge extraction and height 
transformation procedures alter the measured photometric and amplitude spectrum 
slope values of the corresponding derived images. However, their geometrical, frac-
tal-scaling properties remain essentially identical, making these image types and 
image transformation procedures well-suited for investigating perception and aes-
thetics of fractal patterns (Isherwood et al. 2017; Taylor and Spehar 2016). Indeed, 
because the D value charts the ratio of coarse-to-fine geometrical structure in a pat-
tern, it can be considered a powerful and generic measure of visual complexity gen-
erated by repeating patterns. Previous studies have consistently found that the per-
ceived complexity of natural images, paintings and synthetic patterns all increase 
linearly with greater measured D values (Bies et al. 2016; Spehar et al. 2003; Vieng-
kham and Spehar 2018).

4  Multisensory Fractal Aesthetics

While the role of fractal statistics in vision has generated considerable attention, 
their potential role in other sensory domains is a question of both theoretical and 
applied interest. For example, in the auditory domain, it has been found that mel-
odies generated such that their notes follow a 1/fα distribution with specifically 
defined α values close to the intermediate, ‘natural’, range are regarded as the most 
melodic and music-like compared to melodies with a random distribution (Beauvois 
2007; Voss and Clarke 1978). Similarly, random white noise adjusted with a 1/fα 
function enable the production of different ‘colours’ of noise. Pink noise is created 
when α is close to 1 and a greater proportion of power is distributed to lower fre-
quencies, resulting in sound similar to many natural phenomena, like crashing waves 
and rain (Gardner 1978). Although results suggest the similar role of fractal-scaling 
characteristics across different senses, this question remains underexplored without 
direct comparisons between specific sensory domains.

In particular, the role of fractal-scaling characteristics has been under-explored 
in the tactile modality. This is, to some extent, paradoxical given that 3D surfaces 
rendered with fractal-scaling characteristics are known to produce remarkably accu-
rate and convincing models of natural textures and forms (Pentland 1984). While, 
some studies have used 3D-like models of textures and terrains, these were typically 
viewed on computer monitors and never engaged physical interaction (Padilla et al. 
2008; Pentland 1984; Spehar et  al. 2016). However, much like vision and sound, 
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aesthetic experiences can also be induced tactilely such as in the sensation of pleas-
ant touch (Juricevic 2009). Tactile input requires an active and intimate exploration 
between the perceiver and stimuli, and can induce strong emotional experiences 
that subsequently shape the perceivers’ affect and aesthetic experience (Gallace 
and Spence 2011). Given the promise of fractal-based approaches in both visual 
and auditory modalities, extending these methods to our sense of touch is a logical 
advance in empirical aesthetics. This is further afforded with the recent advance and 
accessibility of 3D printing technology, enabling generation of fractal surfaces with 
great accuracy and upon a variety of materials.

5  Current Study

In the current study, we sought to investigate aesthetic preferences in visual and tac-
tile sensory modalities using stimuli generated with equivalent fractal scaling sta-
tistics. We aimed to extend the findings of previous investigations that have tended 
to consider the preference with different types of synthetic fractal images in isola-
tion from each other and, almost exclusively, only in the visual modality. We used 
a parametric manipulation of the fractal-scaling characteristics in a variety of one-
dimensional (edges only and two-tone images), two-dimensional (grayscale) and 
three-dimensional (3D printed surfaces) patterns to directly compare the generaliz-
ability of aesthetic qualities of fractal surfaces and their similarity across the visual 
and tactile sensory domains. By keeping the fractal-scaling characteristics identical 
across a range of distinct and visually dissimilar image types (grayscale, two-tone 
black and white, edges only, three-dimensional terrains), we explore the potential of 
fractal geometry as a structural primitive for the aesthetic experience in visual and 
tactile sensory modalities.

While the correspondence between vision and touch has been shown with the 
parallels between tactile and visual illusions (Geldard and Sherrick 1972), cross-
modal associations (Spence 2011) and cross-modal integration (Woods and New-
ell 2004; Lunghi et al. 2010; Lunghi and Alais 2013), these studies do not directly 
address the cross-modal correspondence regarding the experienced perceptual quali-
ties between the two modalities. A rare exception is the work by Albertazzi et al. 
(2016) who have demonstrated a cross-modal association between specific tactile 
perception attributes such as warm-cold, smooth-rough, lightweight- heavy, soft-
hard and the visual experience of abstract paintings. Our aim is to further explore 
the aesthetic geometries of vision and touch with a choice of fractal scaling as a 
relational, spatial-scale bound, geometrical primitive.
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6  Method

6.1  Design

The experiment used a within-subjects design with stimulus type (grayscale, thresh-
olded, edges, tactile) and level of fractal dimension (D) as the independent variables. 
Preference for different levels of fractal dimension was measured separately within 
each stimulus type using a two-alternative forced-choice, paired-comparison design.

6.2  Participants

A total of 51 undergraduate psychology students (66.67% female, mean age = 19.86, 
SD = 5.89) participated in the study in exchange for course credit. Participants gave 
informed written consent and all experimental procedures were approved by the 
UNSW Human Research Ethics Advisory Panel (#2660).

6.3  Materials and Apparatus

6.3.1  Visual Stimuli

All variations of visual stimuli used in this experiment are shown in Fig. 6. Gray-
scale images were generated in MatLab by creating a 512 × 512 grid of random 
pixels (with values between 0 – 255) selected from a Gaussian distribution. A Fast 
Fourier was then performed to create a series of amplitude spectra at nine different 
levels of α falloff (α = .5, .75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25 and 2.50). An inverse 
Fourier transform applied each amplitude spectra to the 512 × 512 Gaussian noise 
image, resulting in images possessing specific desired  α values. To obtain the thres-
holded variations, the same grayscale images are bisected at the mean luminance 

Fig. 6  Examples of the grayscale, thresholded and edge variations of the synthetic fractal images. 
Respective input amplitude spectrum slope (α) and average measured fractal dimensions (D) as displayed 
in the bottom two rows
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value. All pixels below the mean luminance value become one solid dark colour and 
everything above it becomes a solid lighter colour.

Edges only images were created from the thresholded images by an edge extrac-
tion procedure, resulting in solid light lines on a dark background for the edge image 
variations. For each amplitude spectrum slope listed above, the respective fractal 
dimension values of the images are D = 1.97, 1.95, 1.82, 1.65, 1.41, 1.20, 1.10, 1.05 
and 1.01. Mean brightness and RMS contrast for all images were controlled at 126 
and 0.15, respectively.

6.3.2  Tactile Stimuli

Models of the 3D tactile stimuli were generated in MatLab following the three steps 
illustrated in Fig. 7. In the first step, similar to the visual stimuli, a series of 1/f noise 
images varying in amplitude spectra characteristics were created (Fig. 7, top row). 
The seven different amplitude specturm slope values were created (α =1.25, 1.50, 
1.75, 2.00, 2.25, 2.50 and 2.75) and RMS contrast for all images was controlled at 
.15. In order to create 3D solids (Fig. 7, middle row), the tonal values of each pixel 
in the image was translated to correspond to a specific height in three-dimensional 
space (height increased as luminance of pixel value increased towards 255). These 
models were 3D printed onto one face of a 10 × 10 × 1  cm hard, synthetic block 
(Fig. 7, bottom row). The equivalent estimated D values of these surfaces are 2.82, 
2.65, 2.41, 2.20, 2.10, 2.05 and 2.01 respectively (based on the measured D of the 
initial grayscale image).

All visual stimuli were presented on a 22.5-inch VIEWPixx LCD screen. Tactile 
stimuli were presented on a tabletop behind an adjustable metal occluder.

Fig. 7  Images of grayscale images (top row), computer-generated 3D solids (middle row) and the final 
3D printed tactile surfaces (bottom  row). αi is the amplitude spectrum slope used to create the corre-
sponding original 1/f amplitude spectrum grayscale image, D2D is the fractal dimension of the grayscale 
image and D3D is the approximate dimension of the final 3D tactile surface
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6.4  Procedure

Following the collection of written consent, participants were seated and given a 
brief set of verbal instructions. The order in which visual or tactile stimuli were pre-
sented was pseudorandomised such that an equal number of participants received 
one or the other first. We used a two-alternative forced-choice (2AFC) method to 
measure preference across the different levels of fractal dimension within all stimu-
lus types. Visual stimuli (grayscale, thresholded and edge images) were presented 
via a custom  MatLab  code and viewed on a monitor adjusted to the participant’s 
eye-level and situated approximately 50 cm away (subtending a visual angle of 15°). 
The room lighting was dimmed during the completion of the visual portion of the 
experiment. For each image type, participants were shown with two images of dif-
ferent fractal dimension values side-by-side and instructed to indicate which they 
preferred. Choice was indicated via presses of the appropriate response keys on a 
keyboard and there was no set time limit. Given the 9 unique levels of fractal dimen-
sion, a total of 72 paired judgements were made for each variation of the visual stim-
uli. This resulted in 216 trials for the visual portion of the experiment.

Tactile stimuli were presented manually by the experimenter on a tabletop and 
behind an occluder. Throughout the session, participants were not able to see the 
stimuli but were instructed to reach behind the occluder and explore pairs of tex-
tures with their hands. The preferred texture out of the pair was pushed forward and 
recorded. Each pair was kept behind the occluder until a response was given, after 
which they were withdrawn by the experimenter and placed in a box hidden from 
participants’ view. This was procedure was repeated until all 42 paired comparison 
trials (given the 7 levels of fractal dimension) were completed.

In sum, participants evaluated 258 paired trials over the course of the experimen-
tal session, which took approximately 30 min to complete.

7  Results

7.1  Analysis of Population Preferences

7.1.1  Preferences for 1/f Noise Images

Preference was indexed by the proportion of times a stimulus was chosen when it 
was presented. Average preference as a function of fractal dimension for each varia-
tion of visual stimuli is shown in Fig. 8.

A repeated-measures analysis of variance (ANOVA) revealed no main effect 
of image type of preference, but a significant main effect of fractal dimension, 
F(1.846, 8.710) = 4.719, p = .002, and a near significant image type/fractal dimension 
interaction on preference,  F(3.484, 174.208) = 2.398, .060. When averaged over image 
type, preference was greatest for images with intermediate fractal dimension values 
of 1.20 (M = .601, 95% CI [.566, .636]) and 1.41 (M = .601, 95% CI [.558, .644]). 
Preference scores for both 1.20 and 1.41 D images were significantly greater than 
those with D values of 1.01 (M = .459, 95% CI [.373, .545), 1.05 (M = .488, 95% CI 
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[.418, .558]), 1.82 (M = .356, 95% CI [.435, .551]), 1.95 (M = .418, 95% CI [.356, 
.481]) and 1.97 (M = .346, 95% CI [.274, .419]).

These results support previous findings showing a robust curvilinear preference 
function across fractal dimension, as well as the similarity between these prefer-
ence outcomes between different image types (Spehar and Taylor 2013; Spehar et al. 
2016).

7.1.2  Preferences for 1/f Tactile Surfaces

Average preference for tactile stimuli across each level of fractal dimension is shown 
in Fig. 9. A repeated-measures ANOVA revealed a significant main effect of frac-
tal dimension on tactile preference, F(1.805, 8.507) = 44.783, p < .01. Average prefer-
ence scores decreased linearly, generally with preference for each greater value of 
D being significantly lower than the previous. In short, preference scores were the 
highest for stimuli with D values of 2.01 [M = .783, 95% CI (.712, .853)] and 2.05 
[M = .719, 95% CI (.653, .785)]. Both 2.01D and 2.05D stimuli were preferred sig-
nificantly more compared to all other levels of D (p < .01), however they did not 

Fig. 8  Average preferences as a function of fractal dimension for  the three variations of visual stim-
uli (grayscale, thresholded and edges only)

Fig. 9  Average preferences as a 
function of fractal dimension for 
tactile stimuli
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differ significantly from each other (p = .116). Overall, participants preferred sur-
faces that were smoother and this preference decreased linearly as surfaces became 
rougher.

It is obvious that the average preference for fractal-scaling variations with real three-
dimensional surfaces does not follow an inverted-U shape, as was observed with the 
visual patterns. However, based on the present data, there is not enough evidence to 
claim that the function relating the fractal-scaling variations and preference are qualita-
tively different across the two sensory domains. Namely, while the experimental stim-
uli produced to investigate the preference for fractal-scaling variations across the two 
domains are qualitatively similar, it is impossible to be certain that they span exactly the 
same range of the fractal-scaling variations in the two different domains. One must note 
that while they shared the similarities in the amplitude spectral characteristics of the 
seed grayscale stimuli, we did not compare the extent to which the stimuli across the 
two domains were similar in their perceived roughness or complexity. In other words, 
it is possible that the range of the perceived variations in the complexity or roughness 
between the visual and tactile domains was different. In particular, the surface with the 
lowest fractal dimension in the tactile domain was far from being completely smooth or 
flat, making the range of the fractal-scaling variations more compressed in the tactile 
domain, ranging from the very rough to only the intermediate roughness.

7.2  Latent Dimensional Structure in Visual and Tactile Preferences

7.2.1  Visual Preference Factors

While the average preference functions between vision and touch differed, similar 
latent variables could underlie how fractal-scaling variations affect preferences in both 
stimulus modalities.

To examine this, we performed an independent principal component analysis with 
Varimax rotation for each variation of the visual stimuli (Fig.  10). Across all three 
image types, two major factors with eigenvalues greater than 1 emerged. For grayscale 
images, the two factors accounted for a cumulative 90.99% of preference variance. Fac-
tor 1 characterised a curvilinear component with strong positive loadings on D values 
of 1.65 and 1.82 and strong negative loadings on values of 1.01 and 1.05. Factor 1 can 
be described as a component that captured the intermediate-simple dimensions of pref-
erence and accounted for 45.57% of preference variance. Factor 2 also characterised a 
curvilinear function, but with strong loadings at 1.10, 1.20 and 1.41, and strong nega-
tive loadings at 1.95 and 1.97. It can be described as a component that capture the inter-
mediate-complex dimensions of preference and accounted for approximately 45.42% 
of total preference variance. The nature of the factors extracted from both thresholded 
and edge image variations were remarkably similar to that of the grayscale factors. 
Two factors with eigenvalues greater than 1 were extracted, which, together accounted 
for 87.35% and 86.57% of total  preference variance for thresholded and edge  only 
images respectively (Fig. 10). Furthermore, extracted factors in both image variations 
can be described as characterising an intermediate-simple and an intermediate-complex 
preference component.
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7.2.2  Tactile Preference Factors

We performed a principal components analysis with Varimax rotation to examine the 
latent dimensions in tactile preferences as well. Two major factors with eigenvalues 
greater than 1 emerged for tactile preferences. Together, the two factors accounted 
for 86.85% of total preference variance. Factor 1 captured the rough-smooth compo-
nents with strong positive loadings on D values 2.65 and 2.82, and strong negative 
loadings on D values of 2.01 and 2.05. Factor 1 corresponded to preference driven 
primarily by whether the surface was rough or smooth and accounted for 58.71% of 
preference variance. Factor 2 characterised a curvilinear function with strong posi-
tive loadings on D values of 2.20 and strong negative loadings on values of 2.65 and 
2.82. This corresponded closer to an intermediate-rough dimension of preference 
patterns and accounted for 28.14% of preference variance.

Fig. 10  Loadings for each level of fractal dimension as labelled by Factor 1 and 2 of a PCA for gray-
scale, thresholded, edge and tactile stimuli
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7.3  Intra‑Individual Stability of Preferences Across Stimuli

7.3.1  Correlational Analyses Between Variations of Visual Stimuli

To investigate the stability of individual preferences, we calculated the Pearson 
correlation coefficient between preference scores on the three sets of visual stimuli 
for each participant. The distribution of individual correlation coefficients between 
visual stimulus pairs are shown in Fig. 11. On average, individual preference was 
positively correlated across all stimulus types. Preferences between thresholded 
and edge variations showed the greatest intraindividual stability, Mr= .695, 95% CI 
[.605, .785]. Furthermore, correlation coefficients between thresholded and edge 
images showed that 39.21% of subjects had preference correlations of .8 or higher 
and 74.5% had correlations of .4 or higher. More modest positive correlations were 
also found between grayscale and edges images,  Mr = .194, 95% CI [.010, .379], as 
well as grayscale and thresholded images,  Mr = .230, 95% CI [.041, .419].

7.3.2  Correlational Analyses Between Visual and Tactile Preferences

As equal data points for each stimulus type are required for the correlational analy-
sis, the data for the two lowest FD levels (1.01 and 1.05) of the visual stimuli were 
omitted. The omission of these particular values was intentional. Based on the aver-
age preference data, the perceived correspondence between visual and tactile stimuli 
increased as D increased. In contrast, as D decreased in both domains, the varia-
tions in roughness at each level of D asymptotes at a higher level in the tactile stim-
uli compared to the visual stimuli. That is, while the visual stimuli at the lowest 
level of D appear quite simple, the tactile surfaces still maintain a relatively bumpy 
and irregular  appearance. By omitting  the scores from the two lowest levels of D 
in the visual stimuli the stimuli across the  visual and tactile domains were more 

Fig. 11  Left figure is a box-and-whiskers plot showing the distribution of correlations between the three 
variations of visual stimuli (grayscale [GS], thresholded [TH] and edges [ED]). + indicates the mean cor-
relation coefficient of each distribution. Right figure shows the frequency distribution of individual pair-
wise correlations across all pairs of visual stimuli
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perceptually matched. Pearson correlation coefficients were then calculated between 
visual and tactile preference scores for each individual. The distribution of individ-
ual correlation coefficients is shown in Fig. 12. Overall, correlations between tactile 
and visual stimuli were positive but much weaker compared to correlations between 
each of the visual variations. Average correlations were the greatest between tactile 
and thresholded images,  Mr = .334, 95% CI [.152, .516], and tactile and edge images, 
 Mr = .267, 95% CI [.069, .465]. Average individual correlations between tactile and 
grayscale images were the lowest of the three,  Mr = .135, 95% CI [−.073, .343].

8  Discussion

The current study examined average and individual aesthetic preferences for varia-
tions in fractal-scaling characteristics across two modalities: vision and touch. In the 
visual modality, three variants of 1/f synthetic noise images were used: one-dimen-
sional thresholded and edge images and two-dimensional grayscale images. The tac-
tile modality was assessed using three-dimensional variations of the 2D grayscale 
images, converted into a depth map and printed onto physical three-dimensional 
surfaces. Variations in the fractal structure for both stimulus domains was achieved 
by varying the input amplitude spectrum slope used to generate the seed grayscale 
synthetic noise images. Consequently, the fractal dimension of the seed 1/f noise 
patterns and subsequent variations were similarly parametrised.

The primary aim of our study was to determine which fractal-scaling character-
istics across the one-, two- and three-dimensional stimuli were considered the most 
aesthetically appealing and whether the underlying dimensional structure of prefer-
ence patterns was consistent across the two examined sensory modalities. We found 
for the visual one- and two- dimensional stimuli, images with measured D values 
in the intermediate 1.20–1.41 range were the most preferred compared to both 

Fig. 12  Left figure is a box-and-whiskers plot showing the distribution of correlations between each of 
the visual stimuli (grayscale [GS], thresholded [TH] and edges [ED]) and the tactile stimuli [T]. + indi-
cates the mean correlation coefficient of each distribution. Right figure shows the frequency distribution 
of individual pairwise correlations
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higher and lower D values. This curvilinear preference persisted across all three of 
the image variations and was consistent with previous findings (Spehar et al. 2003, 
2016; Spehar and Taylor 2013).

On the other hand, average preferences for the three-dimensional tactile stim-
uli followed a linear pattern. Preference decreased linearly with increasing fractal 
dimension values and smooth surfaces with 2.01D and 2.05D were the most pre-
ferred. This supports a consistent finding in both the visual and tactile domains in 
which smooth contours are preferred over sharp contours (Bar and Neta 2007) and 
increases in tactile roughness typically leads to a decrease in perceived pleasantness 
(Etzi et al. 2014, 2018). It is proposed that smoother textures are regarded as less 
threatening, more comforting and generally more pleasant to the touch.

We also examined the consistency of fractal-scaling preferences across the three 
dimensions of stimuli, and the two sensory modalities of vision and touch. Previous 
research has found a great degree of individual consistency in preference between 
the one-dimensional image variants (thresholded and edge images), as well as 
between one-dimensional images and two-dimensional grayscale images (Spehar 
and Taylor 2013; Spehar et  al. 2016). Here again, we found remarkable similari-
ties in the latent dimensional structure extracted across all variations of the visual 
stimuli, as well as positive average correlations of intraindividual preferences.

Whereas both one- and two-dimensional stimuli were perceived in the visual 
domain, the inclusion of three-dimensional variations required the engagement of 
active tactile perception. Intraindividual preference correlations between tactile and 
visual stimuli were positive, but not as strong as correlations between some of the 
visual variations. This finding is expected as both the average shape and main factor 
extracted from tactile preferences primarily supported a linear, smooth-rough rela-
tionship between fractal-scaling and aesthetic preference.

However, this does not necessarily reject the notion that visual and tactile 
domains have no common base in how fractal-scaling statistics influence aesthetic 
perception. Indeed, it is possible that the range of variations in the complexity and 
roughness between the visual and tactile domains differed; in other words, the stim-
uli between the two sensory domains were not cross-modally matched. Low D tac-
tile stimuli still maintained a slightly rough and irregular surface, leading to a more 
compressed range of variations in the tactile domain compared to the visual. Fur-
thermore, the results from our principle components analysis indicated a small, but 
significant proportion of 1/f surface preference variance was driven by an intermedi-
ate-polar component. While a majority of subject preferences are distinguished via 
differences in surfaces based on the smooth-rough dimension, there were also those 
whose preference patterns are better accounted for by whether the surface is inter-
mediate in roughness or on the polar ends of the smooth-rough spectrum. Assuming 
that surfaces within the intermediate D range are reflective of the most ‘natural’ tex-
tures, this could be suggestive of a natural-artificial factor for preference. However, 
the precise nature and specific textural qualities subjects are drawing upon to make 
their preference judgments, remains unclear. Additionally, interindividual differ-
ences in aspects like tactile sensitivity and frequency exposure to natural real-world 
surfaces may also play a part in determining preference.
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Fractal-scaling statistics, particularly those of a geometric basis, have a clear and 
established role in the aesthetic perception of visual stimuli. In both the cases of 
one-dimensional fractal patterns and two-dimensional noise images, measures like 
fractal dimension reliably correspond to the perceived complexity and aesthetic 
judgements of these visual stimuli. Presently, the same conclusions cannot yet be 
made regarding the tactile perception of three-dimensional fractal surfaces. While 
preferences in the visual and tactile sensory domains correlated positively and 
both shared similarities in the underlying dimensions extracted from their fractal-
scaling and preference functions, the robustness of fractal-scaling statistics across 
modalities requires further testing and clarification. While the current study pro-
vides a novel, exploratory investigation into the commonalities between the sensory 
domains of vision and touch, we hit upon several pertinent inquiries regarding how 
the perception of fractal-scaling statistics may be equated across the two modalities 
and whether the stimuli we utilised was a sufficient representation of the entire pos-
sible range. It is conceivable that the D range used for the visual and tactile stimuli 
in the experiment were not ideally matched. For example, the lowest D values for 
the tactile surfaces may not be perceptually equivalent to the lowest D images and 
vice versa for the high D variations. If the D range were to be extended to include 
the even smoother or even rougher textures, the congruence in preferences across 
modalities may be better matched across the sample and within individuals. Nev-
ertheless, our results suggest the fractal scaling as a common aesthetic primitive in 
visual and tactile sensory domains.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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