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a b s t r a c t 

Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, films, spoken narratives) 

provide insights into cognitive function “in the wild ”. Natural stimuli typically possess crowded, spectrally dense, 

dynamic, and multimodal properties within a rich multiscale structure. However, when using natural stimuli, var- 

ious challenges exist for creating parametric manipulations with tight experimental control. Here, we revisit the 

typical spectral composition and statistical dependences of natural scenes, which distinguish them from abstract 

stimuli. We then demonstrate how to selectively degrade subtle statistical dependences within specific spatial 

scales using the wavelet transform. Such manipulations leave basic features of the stimuli, such as luminance 

and contrast, intact. Using functional neuroimaging of human participants viewing degraded natural images, we 

demonstrate that cortical responses at different levels of the visual hierarchy are differentially sensitive to subtle 

statistical dependences in natural images. This demonstration supports the notion that perceptual systems in the 

brain are optimally tuned to the complex statistical properties of the natural world. The code to undertake these 

stimulus manipulations, and their natural extension to dynamic natural scenes (films), is freely available. 
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. Introduction 

Although the entire possible set of images that could be constructed

or imagined) is incredibly vast, the actual set of images encoun-

ered in the natural environment represents but a small subset of

hese possibilities ( Field, 1994 ). All natural images share a number of

haracteristics, and this restricts the degree to which natural images

ccupy the state-space of all possible images. For example, the inten-

ities, colors, and spectral properties of adjacent regions of a natu-

al image are similar – with the correlation decreasing with distance

 Burton and Moorhead, 1987 ; Frazor and Geisler, 2006 ). This lower-

rder pattern of pairwise correlations is, however, only part of the pic-

ure. Natural images also share a number of higher-order statistical re-

ationships ( Graham et al., 2016 ; Hermundstad et al., 2014 ; Karklin and

ewicki, 2009 ; Tkacik et al., 2010 ). For example, spectral properties at

ne spatial scale (such as high contrast edges) are conditionally depen-

ent on those at other scales (such as shading and contours). Together,
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hese statistical properties impart the spatial structure typical of natu-

al images – that is, they produce the patterns we associate with trees,

orests, faces, rivers, rocks, and the like. 

Given that all natural images are structured in a statistically similar

ay, it is not surprising that the mammalian visual system appears to

e specifically tuned for this structure. A great deal of work has been

one to elucidate the response properties of neurons in the visual cor-

ex of a number of mammals (e.g., cat, monkey, and man) ( Hubel and

iesel, 1959 , 1968 ; Yoshor et al., 2007 ). Across these species, it has

een shown that the receptive fields in primary visual cortex are spa-

ially localized, oriented, and selective to structure at various spatial

cales (i.e., acting as bandpass filters) ( Field, 1999 ). It has been sug-

ested that, by being sensitive to specific spatial frequencies and ori-

ntations, the simple cells in primary visual cortex are matched to the

igher-order structure found in natural images. Pertinently, it has been

hown that filters modeled after these simple cells (i.e., similar orienta-

ion and bandpass parameters) respond with a high degree of kurtosis
 Queensland, St. Lucia QLD 4072, Australia. 
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hen presented with images of natural scenes. That is, they respond

articularly precisely to local features in natural scenes with properties

atched to their preferred stimulus properties. Moreover, this kurtosis

iminishes when the filter parameters differ from those found in the

ammalian visual system ( Sekuler and Bennett, 2001 ) so that they re-

pond less precisely and more diffusively to local stimulus features. This

as been interpreted as evidence that the visual system is developed to

ptimize the coding of natural image content as the high degree of kur-

osis leads to sparse, distributed responses – an efficient coding strategy

hereby most of the information for each instance of a specific natural

cene is represented by a small, unique set of cells ( Field, 1999 ). 

To account for such response properties of neurons in primary vi-

ual cortex and their sparse coding of natural image content, it has

een shown that receptive fields can be represented mathematically by

 wavelet-like transform. The wavelet transform is similar to the more

idely known Fourier transform in the sense that it can decompose

 very broad variety of functions and empirical data into a set of os-

illatory basis functions. However, rather than transforming the data

nto a domain of simple sine and cosine functions, the wavelet trans-

orm represents the data with more complex functions – called wavelets

 Graps, 1995 ). These functions are localized in space and process data at

ifferent spatial scales – similar to the receptive fields in mammalian vi-

ual cortex. Importantly, whereas successive frequencies in the Fourier

omain are linearly spaced, successive wavelet scales are dyadic and

ence logarithmically spaced – that is, every scale is twice (or half) the

requency than the level above (or below). Hence, when applied to im-

ges of natural scenes, different wavelet functions are sensitive to the

parse, higher-order statistical structure that is present at different spa-

ial scales ( Field, 1999 ; Olshausen and Field, 1996 ). 

Understanding and manipulating the statistics of natural scenes

olds potential to test the hypothesis that the visual system is tuned to

heir expected (typical) properties. Here we exploit the relationship be-

ween receptive field properties and wavelets to manipulate the higher-

rder statistical structure in natural scenes. This paper comprises two

istinct but complementary parts. In the first part, we show how the

avelet transform can be used to parametrically degrade natural image

tructure: (1) at specific spatial scales, (2) in a global or locally-targeted

ashion, and (3) for dynamic (i.e., films) as well as static scenes. We first

rovide a didactic introduction to wavelet resampling. We then provide

ovel extensions to adopt the procedure from its classic application in

on-parametric inference to its use in naturalistic paradigms, preserving

he color palette of stimuli, and manipulating dynamic natural scenes

films). We also present a novel extension using incremental resampling

o more deeply probe the statistical structure of natural scenes and their

elationship to other natural phenomena. In the second part, we demon-

trate the utility of this approach by showing how it can be used to create

timuli that can be used along with fMRI to probe the hierarchy of hu-

an visual cortex – showing that cortical responses at different levels of

he visual stream are differentially sensitive to the subtle, wavelet-based

arametric statistical manipulations. 

. Manipulating natural image structure – the wavelet transform 

Natural images are usually defined as any image of the natural, phys-

cal, or material world and can portray general scenes (e.g., beaches,

orests, mountain ranges) or specific objects (e.g., rocks, trees, water-

alls). Fig. 1 A, a photograph of a patch of fallen leaves, is an example

f such a natural image. Contrasting this natural image with luminance-

atched noise images ( Fig. 1 B,C) provides insight into the structure and

roperties of natural images. Fig. 1 B was generated by random assign-

ent of pixel luminance values from Fig. 1 A (i.e., white noise) and has

ittle in common with natural images. Fig. 1 C is also random but was

enerated with the additional constraint that the distribution of energy

cross spatial frequencies matched that of the natural image. That is,

t is characterized by a similar 1/f 𝛼 amplitude spectrum ( Fig. 1 D) — a

roperty which describes the distribution of amplitude (luminance in-
ensity) as a function of spatial frequency. Across natural scenes, the

lope ( 𝛼) of this distribution is remarkably similar with values typically

anging between 0.8–1.2 ( Burton and Moorhead, 1987 ; Field, 1987 ;

uderman and Bialek, 1994 ; Tolhurst et al., 1992 ; van der Schaaf and

an Hateren, 1996 ). If the distribution of luminance intensity varia-

ions in nature was random and independent of spatial scale, then nat-

ral scenes would possess the amplitude spectra of white noise ( 𝛼 = 0)

 Fig. 1 B), where amplitude is the same across all spatial frequencies. 

Despite the similarity between the amplitude spectra of an actual nat-

ral scene ( Fig. 1 A) and of “natural ” (or colored) noise ( Fig. 1 C), one

ould have no trouble identifying the true natural scene. This demon-

trates how matching lower-order statistical properties is insufficient

o produce the structure present in natural images. Rather, the struc-

ure is a consequence of higher-order statistical relationships. Being able

o parametrically manipulate these statistical dependences permits the

ontrolled investigation of how the visual system processes this structure

nd is the main objective of the wavelet technique described below. 

To manipulate natural image structure using wavelets, the discrete

avelet transform (DWT) is first used to perform a multi-resolution de-

omposition of the image data ( Breakspear et al., 2004 ). This decom-

osition uses a family of wavelet basis functions sensitive to variance

t specific spatial scales. At each scale, the data are decomposed into

wo orthogonal components containing information about the variation

n signal intensity at that spatial scale (i.e., the detail coefficients) and

he residual of the signal after those and all smaller details have been

emoved (i.e., the approximation coefficients). Because the image data

s two-dimensional, the detail coefficients are further decomposed into

orizontal, vertical, and diagonal components. Note that the original

mage can be recovered, without loss, by linearly adding the approxi-

ation of the signal at a specific spatial scale together with the details

t that scale and all smaller scales. A more detailed description of the

wo-dimensional DWT can be found in the Supplementary Material (S1).

.1. Degrading scale-specific information 

As emphasized above, the DWT yields a representation of the im-

ge data across a hierarchy of spatial scales. Whereas the original image

s spatially correlated, the DWT is a “whitening ” transform and adja-

ent wavelet coefficients are statistically independent ( Bullmore et al.,

001 ). It is therefore possible to randomly permute the detail coeffi-

ients within any level of this hierarchy – essentially destroying the

igher-order statistical dependences at the specific spatial scale repre-

ented by that level without loss of energy. This crucially differs from

moothing, filtering, or adding noise to the data. Following this permu-

ation, the inverse DWT is performed, yielding an image nearly iden-

ical to the original but without structure at the targeted spatial scale.

ig. 2 illustrates the results of this process in which the structure present

n a natural image ( Fig. 2 A) is degraded at individual spatial scales

 Fig. 2 B,C) as well as at multiple scales ( Fig. 2 D,E). Importantly, this

rocess only degrades the higher-order statistical relationships while

aintaining the lower-level image content such as the contrast, lumi-

ance histogram, and spatial frequency content ( Fig. 2 F). 

Inspection of this process reveals the effects of degrading the struc-

ure present in a natural image at various spatial scales. Close inspection

f Fig. 2 B(b) reveals that the very fine structures have been degraded –

ncluding veins of leaves and the sharp edges of the plant blades. This

s in contrast to Fig. 2 C(c) in which the finer details are still present,

ut coarser structures (e.g., at the level of entire leaves) have been dis-

upted. Fig. 2 D(d) illustrates the effect of degrading the structure at all

cales except the fine scale with the image being nearly devoid of all nat-

ral image structure. However, from what is otherwise a pure colored

oise image, one can distinctly make out the very sharp edge details that

ere otherwise degraded in Fig. 2 B(b). Finally, Fig. 2 E(e) illustrates the

ffect of degrading this remaining scale of information (along with all

thers) – producing a colored noise image with no apparent natural im-

ge structure but with nearly identical low-level image content as the
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Fig. 1. Difference between a natural image and noise. (A) Natural image. (B) Random noise. (C) 1/f 𝛼 noise. (D) Spatial frequency spectra for A-C. Note that the 

image in A is from the Zurich natural images database ( Einhauser and Konig, 2003 ). 
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riginal natural image ( Fig. 2 F). That is, the original and wavelet scram-

led (or “wavestrapped ”) data are essentially identical in terms of very

asic visual features (e.g., luminance, contrast, and spectral content).

he more elusive properties that couple details, edges, and outlines to

epth, shadows, and context – and that convey the meaningful proper-

ies of natural visual scenes – have been randomized. 

.2. Wavestrapping can be spatially-localized 

Unlike the Fourier transform, the wavelet basis functions are lo-

alized in space. This attribute makes it possible to use the wavelet

ransform to degrade natural image structure in a spatially-restricted

anner, rather than uniformly across the entire image. The procedure

s similar to that described above, except that only detail coefficients

ssociated with a specific spatial domain are permuted before perform-

ng the inverse DWT – the detail coefficients outside that domain are

eft unchanged. The result of such a spatially-restricted degradation are

llustrated in Fig. 3 . Here, we have independently resampled the coef-

cients associated with the central region of a natural scene image and

ts surround. If fixating at the center of the image, this procedure can be

sed to degrade natural image structure to probe foveal vs. peripheral

isual processing. Notably, any spatial domain can be used to restrict

he permutation process. This same basic procedure can hence be used

o target processing associated with specific hemifields or quadrants of

n image. 

.3. Extension to color images 

The wavestrapping approach can be extended to color images

 Fig. 4 A). However, the addition of color information does require fur-

her considerations. While each pixel in a grayscale image can be de-

cribed by a single number (intensity), color images contain three num-

ers per pixel – one for each color channel: red, green, and blue. The
implest extension of the above randomization techniques to a color im-

ge is to degrade the spatial structure in each channel independently.

owever, doing so does not preserve the color palette ( Fig. 4 B). To pre-

erve the original colors (the color equivalent of preserving the pixel

mplitude distribution), the image structure within each channel needs

o be permuted in the same way across channels. In practice this can be

chieved by permuting the detail coefficients within each color channel

eginning with the same random seed ( Fig. 4 C). 

.4. Extension to naturalistic movies 

The above principles can be extended to dynamic natural scenes –

.e., film stimuli. In this case there is the additional dimension of time.

ilm stimuli incorporate the rich temporal variations in our environ-

ent and hence can provide a more engaging and ecologically-valid nat-

ralistic experience than traditional static images ( Hasson et al., 2004 ;

oberts et al., 2013 ; Sonkusare et al., 2019 ). The key consideration then

s how to handle the temporal domain alongside the degradation of the

patial dimensions. One simple possibility is to permute the (spatial)

avelet coefficients within each frame independently, breaking the tem-

oral structure associated with the scrambled spatial scales. However,

his whitens the temporal spectra – introducing spurious high frequen-

ies – as each frame differs abruptly from the preceding one. To fully pre-

erve the temporal structure, one can use the same random seed for each

rame (and for color videos, within each color channel too). Even with

ll spatial scales scrambled, preserving the temporal structure leaves an

imprint ” of moving objects within the scene, as well as pans and cuts

see Supplementary Material S2, Sup Movie 1 for an example). Given

he importance of motion to the visual system – including the “biolog-

cal motion ” of humans ( Allison et al., 2000 ; Schultz and Pilz, 2009 ) –

his preservation of apparent motion is crucial when permuting dynamic

lms in the wavelet domain to study the visual cortex. 
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Fig. 2. Using wavelets to degrade scale-specific natural image structure. (A) Intact natural image. (B) Natural image with fine scale structure degraded. (C) Natural 

image with coarse scale structure degraded. (D) Natural image with all scales of structure degraded except the fine scale (arrows indicate examples of remaining fine 

scale structure). (E) Natural image with all scales of structure degraded (i.e.,1/f 𝛼 noise). (F) Spatial frequency spectra for A-E. Lowercase a-e show a zoomed-in view 

(upper-right quadrant only) of images A-E to aid observation of the manipulations. 
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Fig. 3. Using wavelets to degrade a spatially-restricted area. (A) Intact natural image with dashed circle denoting the targeted foveal region. (B) Natural image with 

only fine scale structure degraded near the fovea. (C) Natural image with all structure degraded near the fovea. Lowercase a-c show zoomed-in views of the central 

regions in A-C. 

Fig. 4. Application to color images. (A) Intact natural image with RGB color channels. (B) Image with color channels degraded independently. (C) Image with color 

channels degraded identically. Note that the color palette is preserved in C but not B. This can most easily be seen by the examining the body of the wombat, which 

is tannish/brown in both A and C but mottled with red, green, and blue patches in B. Lowercase a-c show a zoomed-in view of the images for closer examination. 

Source photo from author A.M.P. 
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This second strategy of a constant random seed destroys higher or-

er statistics in the spatial domain but leaves those in the temporal do-

ain exactly preserved. Wavelet resampling can also be applied in the

emporal domain, treating the video as a single multidimensional time

eries, rather than as a series of discrete two-dimensional images. No-

ably, temporal variance of dynamic natural scenes also possesses a 1/f 𝛼

mplitude spectrum ( Fig. 5 A). This spatio-temporal wavestrapping can
e achieved in two steps: parallel two-dimensional spatial resampling

ollowed by parallel one-dimensional temporal resampling ( Fig. 5 B).

lternatively, the entire film could be wavestrapped using a single three-

imensional DWT following the same principles as wavestrapping a sin-

le three-dimensional spatial object (such as a single whole-brain fMRI

olume ( Breakspear et al., 2004 )), although this mixes together infor-

ation from the spatial and temporal domains. 
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Fig. 5. Extension of wavestrapping to movies. (A) Temporal spectrum from a film clip shown as the power spectral density (PSD) across temporal frequency. Note 

that the spectrum was calculated from the red channel, middle pixel of Supplementary Movie 1 using a 10 second window and 50% overlap. (B) Schema for two-step 

wavestrapping of films. In Step 1, each frame and at each time point is spatially resampled (indicated by orange arrows). The resampling procedure is identical at 

the same scale for each time point and each frame. In Step 2, the time series from each pixel from the spatially wavestrapped data is resampled in the temporal 

dimension (indicated by yellow arrows). The resampling procedure at the same scale for each voxel is identical. All resampling is performed in the wavelet domain 

after appropriate wavelet decomposition (two-dimensional for Step 1 and one-dimensional for Step 2). 
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Using wavelets to manipulate movie data in the time domain can also

dopt extensions outlined above for spatial images – namely focusing

n high or low temporal scales and/or choosing specific temporal mo-

ents (such as scene transitions) and leaving other blocks unchanged.

emporal resampling can also extend to the parallel stream of audio

nformation. 

.5. Thermodynamics of natural scenes 

Recent work has shown that static ( Saremi and Sejnowski, 2013 ) and

ynamic ( Munn and Gong, 2018 ) natural scenes possess the statistical

allmarks of criticality – that is, they reside close to a phase transition

i.e., a statistical boundary) between order and disorder. Computational

nalyses of natural scenes using the methods of statistical mechanics

as suggested that this phase transition resides within specific latent

ayers of a natural scene ( Saremi and Sejnowski, 2013 ) and is associ-

ted with thermodynamic “frustration ” (see Supplementary Material,

3). By residing near these phase transitions, natural scenes are able to

eflect a critical balance between (1) the ordered arrangement of the

ontours, edges, and textures of various sizes that endow it with struc-

ure and information and (2) the idiosyncratic and haphazard nature of

his arrangement into the objects that characterize any specific scene

nd hence yield its semantic meaning and unique visual impression. 

By applying our wavestrapping approach progressively it is possible

o demonstrate the balance between order and disorder inherent to nat-

ral images ( Fig. 6 ). This is because the randomization can be realized

n varying degrees of depth, from just a few permuted coefficients up to

ull permutation. This is achieved by selecting random subsets of coef-

cients for permutation, leaving others invariant. Fig. 7 A and Movie 1

oth demonstrate the process of progressively disordering a natural im-

ge, which can be thought of as “heating ” the scene. As can be seen in

ig. 7 B, the amount of variability between realizations increases mono-

onically with the depth of randomization. Note that fully randomized

ealizations (i.e., randomization depth of 100%) are the most highly

ariable – akin to a gas. These highly variable realizations can be appre-

iated if one “boils ” the scene (i.e., continues to randomize at a depth

f 100% - see Movie 2). However, incremental permutations do show

cale-specific expressions of variability ( Fig. 7 C) which differ between

cenes. That is, despite their featureless 1/f spatial spectra, each natu-

al scene has a distinct signature of increasing variability at different

cales. Incremental wavelet resampling thus unpacks the latent statisti-

al frustration within natural scenes which is not uniform across scales

nd scenes. 

The wavelet-based randomization (or heating) can easily be re-

ersed. For example, Movie 3 shows the process of “cooling ” the scene

ack down from a boil (i.e., a fully randomized state) to its natural state.
nterestingly, we can then continue to cool the image beyond its natu-

al state and hence approach a single ordered state – akin to a solid

Movie 4). This process of “freezing ” is further demonstrated in Fig. 8 A,

hich shows the process of progressive ordering of a natural image. As

an be seen in Fig. 8 B, the amount of variability between realizations

ncreases to a maximum at approximately 50% of wavelets ordered, cor-

esponding to a mixture of natural and ordered phases, then decreases

gain as the single ordered state is approached. Similar to the process of

andomization, the incremental ordering permutations do show scale-

pecific expressions of variability ( Fig. 8 C) which differ between scenes.

inally, we can “thaw ” a frozen image (i.e., in a 100% ordered state)

o its original, natural state (Movie 5) by progressive randomization (or

eating) as described above. 

Fig. 9 further demonstrates the notion of natural image thermody-

amics with natural images being positioned at a critical phase between

ully ordered and disordered states. Subtle manipulations of dynamic

atural scenes, using wavelet resampling to parametrically disrupt the

omplex statistics of their criticality whilst measuring cortical dynam-

cs, represents an elusive but untested means of understanding how the

tructure of cortical dynamics are tuned adaptively to those of the natu-

al world. Interestingly, the “critical ” nature of dynamic natural scenes

i.e., that they are perched between order and disorder reflecting the

alance of scene stability and sudden, spontaneous transitions) mirrors

he critical, avalanche-like dynamics that occur throughout cortical sys-

ems ( Cocchi et al., 2017 ). Incremental disruption – both “heating ” (ran-

omizing) and “cooling ” (ordering) – allows tuning of a natural scene

hrough its critical point and could be used in conjunction with imaging

r neurophysiological recordings to further explore this intriguing area.

. Probing the visual hierarchy – an fMRI demonstration 

We conducted an fMRI experiment to illustrate the application

f wavelet-based manipulations of natural images to probe the func-

ional architecture of the visual hierarchy. As outlined above, there are

umerous potential ways to manipulate static and dynamic natural

cenes using wavelets. We designed a parametric, passive-fixation task

o demonstrate some of the practical considerations of performing an

MRI experiment using wavelet-degraded stimuli (e.g., number of con-

itions can multiply quickly, use of a fixation task aimed at controlling

ttentional resources, etc.). Our proof-of-principle application to a vi-

ual fMRI experiment builds upon prior research in this field with the

verarching goal being to contrast levels of cortical activity in different

isual regions elicited by the presentation of intact natural images vs.

avelet-degraded natural images. Importantly, the basic image proper-

ies (luminance, spectra) remain the same between the two image types;

nly the higher-order statistical dependences (i.e., the structure of that
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Fig. 6. (A) Images used to demonstrate the thermodynamic properties of natural scenes. (B) Variability vs. wavelet scales. Each colored line is a single permutation 

of the corresponding image at one scale. Image variability is measured as the root mean squared differences between the original and scrambled image across pixels. 

Black lines show image averages. (C) Mean (black) across all four images ± standard deviation (red). There are no trends in mean image variability. 

Fig. 7. (A) Wavelet-based randomization ( “heating ”) of a natural scene, increasing incrementally from the original scene to fully randomized in steps of 25%. (B) 

Variability amongst an ensemble of random realizations increases monotonically with increasing depth of randomization at all scales. (C) However, some scales (here 

fine and coarse) show slightly greater variability with randomization than others (here mid-scales). 
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mage content) differ. To control for possible transition effects between

natural and wavestrapped) stimuli, we designed a factorial experiment

hich counterbalances the nature and order of their presentation. 

Although primarily demonstrative, the experiment was motivated by

 central hypothesis: that higher visual areas would be more sensitive to

he complex structure present in natural images than lower visual areas.

his was motivated by decades of previous research showing that pri-

ate visual cortex is organized hierarchically, with neurons responding

o increasingly complex features as one progresses up the cortical hier-

rchy (DeYoe and Van Essen, 1988; Felleman and Van Essen, 1991; Van

ssen, 2004). 
.1. Materials and methods 

.1.1. Subjects 

Seven, right-handed participants (22–24 years, mean 22.9 years; 3

ale, 4 female) who disavowed a history of neurological or psychiatric

iseases completed a functional neuroimaging experiment. All partici-

ants had normal or corrected to normal vision. The experiment was

onducted with the written consent of each participant following ap-

roval by the local human research ethics committee in accordance with

ational guidelines. 
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Fig. 8. (A) Wavelet-based ordering ( “cooling ”) of a natural scene, increasing incrementally from the original scene to fully ordered in steps of 25%. (B) Variability 

amongst an ensemble of realizations increases to a maximum at approximately 50% of wavelets ordered, corresponding to a mixture of natural and ordered phases, 

then decreases again as the single ordered state is approached. (C) Some scales show greater variability with ordering than others. 

Fig. 9. Natural images (middle column) reside near a critical boundary between order and disorder. Incremental, wavelet-based randomization (or heating) and 

ordering (or cooling) lead to fully disordered (right most column) vs. fully ordered states (left most column), respectively. Sandwiched between the images are plots 

of the variability seen across both scale and the depth of ordering or randomization when cooling or heating the natural image. 
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.1.2. Experimental design 

Stimuli were presented in blocks of 8 s while participants fixated on

 small superimposed crosshair. Stimuli consisted of natural images, de-

raded images obtained through wavestrapping these natural images at

elect (fine or coarse) scales, and colored noise control images matched

or luminance and spectra content obtained through wavestrapping the

atural images at all spatial scales. 

A partial 3 × 2 × 2 within-subjects factorial design was used. The

ndependent variables were type of image manipulation (N1: degrade

rom natural image, N2: degrade from noise, N3: restore from noise),

patial scale manipulated (S1: fine and S2: coarse), and presentation

f manipulation (F1: flip vs. F2: flick). All experimental conditions are
ummarized in the Supplementary Material (S2, Table 1), with repre-

entative conditions described in detail below: 

• N1,S1,F1 – the fine scale information (S1) of a natural image was

permuted (N1). This resulted in the degradation of the structure at

that scale and hence a natural image with all scales of structure intact

except the fine scale. The experimental block involved flipping back

and forth (F1) between the original image and the degraded image.

• N1,S2,F2 – the coarse scale information (S2) of a natural image was

permuted (N1). This resulted in the degradation of the structure at

that scale and hence a natural image with all scales of structure intact

except the coarse scale. The experimental block involved flicking
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through (F2) a series permutations of the same source image (i.e., the

permutation was carried out a number of times on the same natural

image, and were presented in succession during the imaging block).

• N2,S2,F2 – the coarse scale information (S2) of a noise image was

permuted (N2). Since we began with a noise image, there was no

natural scene structure to degrade; however, the permutation was

identical to what was performed on a natural image and leads to a

slightly distinct noise image that differs only at the targeted spatial

scale. The experimental block involved flicking through (F2) a series

of permutations on the same source image. 

• N3,S2,F1 – the coarse scale information (S2) from a natural image

was put into a noise image (N3). The experimental block involved

flipping back and forth (F1) between the original noise image and

the noise image with structure added. 

These stimuli permutations were designed to parametrically control

he depth of image manipulation and the spatial scale targeted while

ontrolling for the effects of image transitions. The factorial design was

ncomplete (partial) in that it was not possible to test the flick presenta-

ion type (F2) for the condition that involved adding structure to a noise

mage (N3). That is, for any given natural scene there is only one possible

nstance of structure that can be added to remain faithful to the original

cene (i.e., any alteration of this structure would change the scene). In

ontrast, there is no limit to the number of instances of noise images

hat can be constructed from each natural scene due to the randomized

ature of the wavestrapped permutations. In addition to the above con-

itions (all of which involve a changing stimulus, whether flipping or

icking), we also included two static image block types: a natural im-

ge (N1, S0, F0) and a noise image (N2, S0, F0). An isoluminant gray

ackground was shown as a baseline block. 

In total then, there were 12 different experimental block types and a

aseline. Each block was presented three times per scan run. All experi-

ental blocks were presented for 8 s and the gray background baseline

as presented for 12 s. During the ON period for the stimulus blocks

ith image change (i.e., flip or flick), the transition occurred every 0.5 s.

he block types were pseudo-randomized except that we ensured that

ach block type followed the gray background baseline condition an

qual number of times and that the last block of every run was the gray

ackground condition to permit the fMRI signal to return to baseline.

2 runs were collected per subject, in a single scan session. 

To control attention, aid fixation, and monitor subject alert-

ess, a color/orientation conjunction task was performed at fixation

hroughout the entire run ( Puckett and DeYoe, 2015 ; Treisman and

elade, 1980 ). For this purpose, a small circle (10 × 10 pixels, subtend-

ng 0.15° visual angle) was superimposed upon the images. The circle

ontained a pattern that randomly changed every 2 s among 4 possi-

le configurations: red horizontal, red vertical, green horizontal, and

reen vertical. The participant was required to report the nature of each

hange via one of two button presses (button 1 = red horizontal or green

ertical, button 2 = red vertical or green horizontal). In addition to the

olor/orientation patch, a fine grid was overlaid on the images to aid

xation ( Schira et al., 2007 ). 

An example of the visual stimulus and block paradigm (with anno-

ation), is presented in the Supplementary Material (S2, Sup Movie 2). 

.1.3. Image manipulation 

Stimuli were constructed by manipulating a set of natural images

sing the wavelet transform (as outlined in Section 2 ). The natural im-

ges were sourced from the “Zurich natural images ” database, which

s freely available for academic use ( Einhauser and Konig, 2003 ). Note

hat the subset of images from this database used here are shown in

he Supplementary Material (S2, Sup Figs. 1 and 2 ). In general, con-

tructing the stimuli involved: converting the RGB image to greyscale,

ermuting the detail coefficients at a specific spatial scale (or scales) us-

ng the wavelet transform, resizing the image (to 768 × 768, subtending

1° visual angle), and then adjusting the luminance values so that the
esampled amplitude spectra matched those from the original natural

mages. More specifically: 

• To degrade a single spatial scale of natural image structure (factor

N1), we permuted the coefficients associated with one of two spatial

scales (i.e., levels): fine (S1) and coarse (S2). Note that the coefficient

levels corresponding to fine and coarse natural image structure are

dependent on the input image size and were determined empirically.

For this, we permuted the coefficients across a series of levels and

chose the two levels corresponding to fine and coarse natural image

structure by visual inspection. Note that the fine scale manipulation

targeted structure in the range of 4.5 - 8.8 cycles per degree and the

coarse scale manipulation targeted structure in the range of 1.3 – 2.4

cycles per degree. 

• To construct noise images that shared the same basic image prop-

erties as our natural images (factor N2), we simply performed the

wavelet degradation on the natural images across all spatial scales.

This destroys all natural image structure, leaving a noise image with

the same 1/f 𝛼 frequency distribution as the original natural image. 

• To put natural image back into a noise image (factor N3), we first

degraded all the spatial scales except that of interest (i.e., all but S1

or S2). Then we degraded the remaining structure at that scale. This

produced a pair of images: one noise image (all scales permuted) and

another that was identical to the noise image except that one spatial

scale of information still remained. 

All wavelet resampling was performed using Daubechies wavelets,

hich are a family of orthogonal wavelets characterized by a maximal

umber of vanishing moments while minimizing asymmetry (here we

sed the db6 wavelet with 6 vanishing moments). To avoid edge ef-

ects when performing the wavelet degrading, which manifest as sharp

orizontal or vertical striping in the image, we did not perform the

avelet degradation over the entire image. Instead, we left an outer

order (1/20th of the image size) untouched around the entire image.

fter the detail coefficients associated with spatial locations inside this

order were permuted, the image was cropped so that only the permuted

ortion remained. 

.1.4. Retinotopic localizer 

To localize cortical responses to visual images, we performed two

ypes of phase-encoded retinotopic mapping: one to map polar angle

nd the other to map eccentricity representations. Briefly, the polar an-

le stimulus consisted of a rotating bowtie (two wedges opposite one

nother and meeting at fixation) and the eccentricity stimulus consisted

f an expanding ring ( Schira et al., 2009 ). The aperture contained one

f three colored texture patterns (checkers, expanding and contracting

pirals, or rotating sinusoidal gratings) which changed randomly every

50 ms. Participants performed a fixation color detection task at a cen-

ral maker, and a fixation grid was overlaid atop the stimuli. 

.1.5. Magnetic resonance imaging data acquisition 

Data were acquired on a Philips 3T Achieva X Series equipped

ith Quasar Dual gradients and a 32-channel head coil. Whole-brain,

natomical images were collected using a magnetization-prepared rapid

cquisition with gradient echo MPRAGE sequence with a TE of 2.8 ms,

R of 6.3 ms, flip angle of 8°, FOV of 256 mm x 256 mm, a matrix size

f 340 × 340, and 250 slices that were 0.75 mm thick – resulting in an

sotropic voxel size of 0.75 mm. 

The voxel resolution of the functional echo planar images (EPIs) col-

ected here was 1.5 × 1.5 × 1.5 mm 

3 across 31–32 oblique coronal slices

overing the occipital pole. EPIs were acquired with a TR of 2 s, a TE of

5 ms, a SENSE factor of 2, a 128 × 128 matrix (ascending acquisition),

nd a FOV of 192 mm. For polar angle mapping 186 vol were collected,

or eccentricity mapping 174 vol were collected, and for the natural im-

ge experiment 184 vol were collected. Before data analysis, the first

ew volumes were discarded to account for the high T1 saturation that

ccurs at the beginning of a scan. For both mapping protocols the first
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 vol were discarded, and for the natural image experiment the first 4

ol were discarded. 

.1.6. Data analysis 

Pre-processing of the functional data was performed using

PM8 (SPM software package, Wellcome Department, London,

K; http://www.fil.ion.ucl.ac.uk/spm/ ). Data were motion corrected

sing a rigid body transform and 7th degree B-spline interpolation. Im-

ges were slice scan time corrected using the first image as the reference

lice and resliced into the space of the first image. 

For retinotopic mapping, “traveling-wave ” analysis procedures were

onducted using the mrVista Toolbox (Stanford University, Stanford,

A; http://white.stanford.edu/software/ ). The cyclic retinotopic map-

ing data was analysed using a fast Fourier transform based correlation

nalysis, as built in the mrLoadRet software from the mrVISTA toolbox.

his estimates a coherency value for each voxel in the cortex as a ratio

etween the power at the stimulus frequency and noise. The retinotopic

ocation (both polar angle and eccentricity) for each voxel was deter-

ined by the phase value at the stimulus frequency. The retinotopy data

ere then displayed on a 3D rendered brain surface ( Engel et al., 1997 ;

chira et al., 2009 ). 

Volumetric segmentation of white matter was performed manually

sing ITK Gray ( Yushkevich et al., 2006 ). 3D surface reconstructions of

he left and right hemisphere were generated using mrMesh (a function

ithin the mrVista Toolbox) by growing a 3-voxel thick layer (1.5 mm

sotropic voxels) above the gray/white boundary. To improve data vi-

ualization (i.e. when projecting functional data onto surfaces), these

urfaces were also computationally-inflated using the “smoothMesh ” op-

ion in mrMesh (8 iterations). Note that the cortical surface models were

nly used for data visualization and region-of-interest (ROI) definition.

ll analyses and statistics were performed using the volumetric data. 

Further analysis in the mrVista Toolbox included a general linear

odel (GLM) of responses across early visual areas (V1, V2, V3) for

ach individual subject. The Boynton Gamma HRF was used to model

he haemodynamic response function ( Boynton et al., 1996 ). All runs

ere concatenated and the null gray background condition was used as

aseline. 

.2. Results 

We first used the retinotopic mapping data to define V1, V2, and

3 ROIs in both hemispheres for each individual ( Fig. 10 ). We then

xtracted the GLM-derived 𝛽-weights associated with each experimental

ondition from all voxels in each ROI. The mean 𝛽-weight was then

omputed for each visual area, combining both hemispheres. 

Fig. 11 A shows the average response in each of the visual area ROIs

or each condition across all subjects. Inspection of Fig. 11 A reveals

 few salient, interesting response differences across visual areas and

cross experimental conditions. Notably, as one progresses up the vi-

ual hierarchy (V1 → V2 → V3), the response amplitude decreases across

ll conditions. It also appears that, in general, the natural images elicit

reater activation than the noise images (N1 > N2,N3). This is true not

nly for the conditions involving image manipulation, but also for the no

anipulation conditions (N1,S0,F0 vs. N2,S0,F0). However, the degree

f difference between natural image (N1) vs. noise image (N2) condi-

ions appears to become greater as one progresses up the hierarchy. 

Qualitative assessment of Fig. 11 A appears to support the core hy-

othesis that higher cortical areas are more sensitive to more complex

tatistical features of natural scenes than V1 (i.e., cortical areas respond

ore strongly when natural image structure is present than when ab-

ent and this difference increases as one progresses up the hierarchy).

o test this, we collapsed the data across the spatial scale (S1 and S2) and

resentation (F1 and F2) factors, and removed the static, no manipula-

ion conditions (N1,S0,F0 and N2,S0,F0; Fig. 11 B). We then performed

 2-way repeated measures ANOVA to investigate if the visual areas dif-

erentially responded to the different image manipulations (N1, N2, and
3). We found that a differential response was indeed present. That is,

n addition to significant main effects for both visual area [ F = 52.3,

 < 0.001] and the type of image manipulation [ F = 11.2, p = 0.0018],

here was also a significant interaction effect [ F = 16.6, p < 0.001]. Look-

ng at Fig. 11 B, it appears that the interaction effect reflects an increas-

ng effect of natural image structure on the responses as one progresses

rom V1 to V3. Recall that N1 is a natural image with one scale of struc-

ure degraded, N2 is essentially a noise image (all scales of structure

egraded), and N3 is mostly a noise image but still has one scale of struc-

ure present. Hence, N1 has the most natural image structure, N3 the

econd most, and N2 has the least. In V1, there is little difference among

he three conditions suggesting that V1 is only weakly influenced by the

resence versus absence of the higher-order correlations that character-

ze natural image structure. In V2, however, the effect of image type

n the average response becomes stronger and appears graded by the

mount of structure present. This same differential response is further

ronounced in V3. 

Sensitivity to different spatial scales is known to vary as functions

f both visual area and eccentricity. That is, receptive field size in-

reases up the visual hierarchy and at increasingly peripheral eccen-

ricities ( Dumoulin and Wandell, 2008 ). We hence also explored the

ffect of the scale condition (S) and its interaction with visual area and

ccentricity. For this, we first sub-divided each visual area ROI into 6

ccentricity bands using the retinotopic mapping data (0.06 ≤ Ecc 1

 0.48; 0.48 ≤ Ecc 2 ≤ 0.95; 0.95 ≤ Ecc 3 ≤ 1.36; 1.36 ≤ Ecc 4

 1.93; 1.93 ≤ Ecc 5 ≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89°). We collapsed the

ata across the presentation (F1 and F2) and image manipulation (N1,

2, and N3) factors, and removed the static, no manipulation conditions

 Fig. 11 C). We then performed a 3-way repeated measures ANOVA find-

ng a significant main effect again for visual area [ F = 37.0, p < 0.001]

s well as significant main effects for eccentricity [ F = 3.5, p = 0.014]

nd scale [ F = 80.6, p < 0.001]. There were also significant interaction

ffects between visual area and eccentricity [ F = 3.3, p = 0.002] as well

s between eccentricity and scale [ F = 4.5, p = 0.004] but not between

isual area and scale [ F = 1.3, p = 0.303] nor among the three [ F = 0.6,

 = 0.804]. Looking at Fig. 11 C, the main effects are clear. For visual

rea, we see a general diminishing of the response as one progresses up

he visual hierarchy (similar to the effect of area seen in Fig. 11 B). For

ccentricity, we see a the same basic inverted-U pattern across eccen-

ricity for each combination of spatial scale condition and visual area

xcept for the fine scale condition in V3 (likely driving the interaction

ffect). For the scale condition, we see consistently greater responses to

he coarse scale manipulation compared to the fine scale (also clearly

een in Fig. 11 A), particularly at intermediate eccentricities. 

With respect to the scale effect, note that the process of wavestrap-

ing a noise image (N2) simply results in another noise image since

o structure was originally present. However, it is important to under-

tand that the resulting noise image is still different from the source

oise image, and the difference is dependent on the manipulated scale.

herefore, when the images are presented by flicking between or flip-

ing through the different instances, changes in the image occur at the

argeted spatial scale. From our results then, it appears that when the

hanges occur at the coarse scale, a higher degree of activity is seen in

isual cortex compared to when the changes occur at the fine scale. The

erceptual difference between the fine and coarse scale resampling of

oise can be seen by contrasting conditions N2,S1,F1 vs. N2,S2,F1 or

2,S1,F2 vs. N2,S2,F2 in Supplementary Movie 2. 

Note that the primary motivation for ‘flipping’ or ‘flicking’ across

ultiple instances within a block was to make the stimuli “dynamic ”

nd hence more salient to the visual system compared to using a static

mage across the block duration. The choice of flipping versus flicking

as selected to probe the role of prior context on visual responses –

.e. whether a statistical violation (the wavelet-degraded scale) would

ave a greater cortical salience when introduced in and out of a pre-

erved scene (F1), or whether the violation would accrue a stronger

esponse when continually presented (F2). Whereas the dynamic con-

http://www.fil.ion.ucl.ac.uk/spm/
http://white.stanford.edu/software/
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Fig. 10. Defining visual area ROIs. For each individual subject, early visual cortex was partitioned into V1, V2, and V3 ROIs using polar angle retinotopic mapping 

data. On the far left is an inflated cortical surface model for the left hemisphere of a single subject. Next to that is a zoomed-in view of the occipital cortex showing 

the polar angle retinotopic map (un-thresholded). On the right is the same zoomed-in view of the occipital cortex, showing the three visual area ROIs overlaid upon 

the curvature pattern. 
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itions did elicit greater responses than their corresponding static con-

itions ( Fig. 11 A), we did not find any main effect of the presentation

actor (F1 vs. F2) [ F = 0.2, p = 0.681] nor an interaction with visual

rea [ F = 3.4, p = 0.067] when conducting a 2-way repeated measures

NOVA. 

. Discussion 

Sensory and cognitive neuroscience has traditionally employed sim-

le, abstract, and narrowband stimuli to examine cortical response prop-

rties. These stimuli have served the field well, offering a way to tightly

ontrol variables of interest and leading to an extensive characterization

f the response of single neurons and populations of neurons to basic

mage properties such as luminance, contrast, orientation, and spatial

requency. Despite this, these stimuli lack ecological validity as they

arely come close to approximating the types of stimuli encountered in

ypical sensory experiences outside of experimental conditions. Perti-

ently, there is mounting evidence suggesting that the cortex may be

ore strongly ‘tuned’ to the statistical properties of naturalistic stimuli

for review, see Sonkusare et al., 2019 ). For example, a recent study

 Isherwood et al., 2017 ) using broadband noise stimuli observed that

timuli with 1/f 𝛼 spectra close to that of natural scenes (i.e., 𝛼 = 1.25,

ig. 1 C) elicited stronger BOLD responses than stimuli with 1/f 𝛼 spectra

utside of the natural range (i.e., 𝛼 = 0.25 or 𝛼 = 2.25). Interestingly, this

pparent tuning of the cortex to the spectra of natural stimuli is mirrored

y visual sensitivity and preference at the behavioral level. Discrimina-

ion sensitivity, detection sensitivity, as well as aesthetic preference are

ighest for noise stimuli with natural 1/f 𝛼 spectra and lowest for unnat-

ral 1/f 𝛼 spectra ( Spehar and Taylor, 2013 ; Spehar et al., 2015 ). This

upports the notion that the visual system is tuned to the statistical prop-

rties of natural scenes. Findings such as these highlight the importance

f using more complex, naturalistic stimuli in neuroscientific pursuits. 

The benefit of complementing studies using traditional, abstract

timuli with those that use more ecological stimuli is clear. The use

f naturalistic stimuli, however, is still relatively nascent, and as such,

onsiderable challenges remain. One such issue is determining how

o manipulate these naturalistic stimuli with sufficient control and

igor. Seminal early work disrupted the temporal narrative by sharp

lock shuffling of movie segments in the time domain to unveil large-
cale temporal hierarchies in the cortex ( Hasson et al., 2008 ). The

avelet approach outlined in the present manuscript offers an alter-

ative, more nuanced opportunity in this direction to turn the focus

n hierarchies in the visual system. Our work demonstrates that it is

ossible to parametrically and subtly manipulate the complex statis-

ical properties of natural scenes with a high degree of control and

exibility – and that the visual system is sensitive to these subtle

anipulations. 

There are a wide range of ways that wavelets can be used to ma-

ipulate stimuli to probe functional effects of natural scene statistics in

he visual hierarchy, some of which were described in Part 1. The neu-

oimaging study here (Part 2) makes use of one of these, demonstrating

ome of the practical considerations of performing an fMRI experiment

sing wavelet-degraded stimuli. In doing so, we found evidence in sup-

ort of our main hypothesis (that higher hierarchical regions in visual

ortex are more sensitive to natural scene statistics). These results are

onvergent with other recent research, using substantially different vi-

ual stimuli, showing that sensitivity to the distinctive higher-order cor-

elations of natural scenes begins to arise in visual area V2. For example,

reeman et al. (2013) found that generated, naturalistic texture stim-

li (with higher-order correlations) differentially modulated cortical re-

ponses in V2 but not V1 compared to spectrally matched noise (with-

ut the higher-order correlations). Notably, comparable results were

ound by the authors using both fMRI in humans and neural record-

ngs in macaque. Yu et al. (2015) similarly showed that many neurons

n macaque V2 (but few in V1) are sensitive to higher-order properties

f natural scenes. Rather than degrading natural images as done in the

resent study or constructing stimuli that mimic naturalistic textures

 Freeman et al., 2013 ), Yu et al. used binary textures that were highly

nnatural, but isolated specific multipoint correlations characteristic of

atural images (i.e., the statistics of the combinations of luminance val-

es that appear in several points of a natural image) ( Hermundstad et al.,

014 ; Tkacik et al., 2010 ). Note that the uniform textures generated by

reeman et al. (2013) appears more “natural ” than the binary textures

 Yu et al., 2015 ), although both can be easily visually disambiguated

rom an actual natural image as they lack the contextual information

nd complex variability present in natural scenes. It is clear then, that

lthough selectivity to higher-order correlations in natural images be-

in to arise in V2, future work is required to determine where along
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Fig. 11. Activation across the early visual hier- 

archy for intact vs. degraded natural images. (A) 

Group averaged 𝛽-weights for all experimental con- 

ditions in each visual areas ROI. Error bars repre- 

sent SEM across individuals. (B) 𝛽-weights in each 

visual area ROI for the different types of image ma- 

nipulations (N1: degrade from natural image, N2: 

degrade from noise, N3: restore from noise), col- 

lapsed across all other factors. (C) 𝛽-weights across 

eccentricity for both scale conditions in each visual 

area, collapsed across other factors. Ecc 1 to Ecc 6 

range from the fovea to the periphery (0.06 ≤ Ecc 

1 ≤ 0.48; 0.48 ≤ Ecc 2 ≤ 0.95; 0.95 ≤ Ecc 

3 ≤ 1.36; 1.36 ≤ Ecc 4 ≤ 1.93; 1.93 ≤ Ecc 5 

≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89°). For (B) and (C), 

whiskers with caps show min/max, bottom and top 

edges of boxes indicate 25th and 75th percentile, 

and central line marks the median across all partic- 

ipants. 
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e  
he hierarchy further selectivity to additional natural image structure

merges. 

The human visual system is composed of many functionally distinct

ortical visual areas ( Grill-Spector and Malach, 2004 ; Zeki et al., 1991 ).

ensory-driven responses tend to decrease as one progress up the visual

ierarchy, and as such, our finding that responses to all of our stimuli

ecrease as one progresses up the visual hierarchy is unsurprising. No-

ably, however, we also found that the higher cortical areas appear to

e more sensitive to the complex visual features – that is, the decrease
n responses up the visual stream was more pronounced for wavelet re-

ampled stimuli. The present application to fMRI data thus suggests that

he higher order structure being degraded by the wavelet technique is

irectly related to the complex features that the higher visual areas en-

ode. That is, cells along the visual hierarchy become increasingly sen-

itive to the conditional dependences among multiple neurons in lower

ierarchical levels, mirroring the complex conditional dependences in

naltered natural scenes. Presumably, this effect would be stronger in

ven higher-order areas; however, our data are insufficient to test this.
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H  
ue to the size and orientation of our fMRI acquisition slab, we only

ave partial coverage of hV4 for most participants. In addition, time

onstraints restricted the number of runs of each retinotopic mapping

timulus – limiting the data quality and thus our ability to confidently

emarcate higher-order dorsal and lateral areas. Future studies could

e designed to circumvent this issue, for example by having a separate

can session dedicated to the collection of a comprehensive, high-quality

etinotopic mapping dataset. 

One powerful aspect of the wavelet-based approach outlined here is

he ability to target structure at specific spatial scales. As mentioned,

eceptive field size and hence spatial frequency sensitivity is known to

ary both across visual areas as well as across eccentricities within a

isual area ( Dumoulin and Wandell, 2008 ; Yoshor et al., 2007 ). By com-

ining the experiment with fMRI-based estimates of population recep-

ive field sizes ( Dumoulin and Wandell, 2008 ; Zeidman et al., 2018 ),

uture studies will be able to take a more detailed look at the relation-

hip between cortical activity related to specific scales of natural image

tructure and the underlying receptive field sizes. Our preliminary re-

ults suggest that manipulations to coarse scales elicit stronger results

cross the visual cortex than manipulations to the small scales. Interest-

ngly, this is found when wavestrapping the noise images (N2) as well

s those with structure present (N1). Although the mean perturbation

cross the images and realizations do not show a scale-specific effect, the

ariability is higher at coarser scales (see Fig. 11 ). Hence the greater re-

ponses to coarse scale manipulations (S2) compared to the fine scale

anipulations (S1) may either reflect stronger neuronal sensitivity to

oarse scale information or encoding of the trial-to-trial variability. In

tudying the effect of scale, it will also be important to test across the

ull range of spatial scales, rather than only two as done in the present

tudy. Full-range, parametric studies are necessary to reveal any impor-

ant non-monotonicity that might be present in the response properties

 Rainer et al., 2001 ). 

Although participants in our experiment attended to a fixation task

hile passively viewing raw and altered static natural images presented

n successive transitions, it is important to note that perception in the

ild is embedded in a broader action-perception cycle ( Fuster, 2002 ). It

hus makes sense to not only use wavelet resampling to degrade the spa-

ial and temporal statistics, but to do so while participants freely view

ovies (i.e., with unrestricted eye movements). As reviewed above,

avelet resampling is directly applicable to dynamic, spatio-temporal

timuli (S2, Sup Movie 1) – and there exists several different ways

f achieving this: preserving, destroying, or manipulating the complex

emporal statistics embedded in dynamic natural scenes. Block resam-

ling is one variant of this broader class, preserving the temporal struc-

ure within blocks but degrading the temporal spectra – precisely and

nly at the time-scale of the block. 

As a final consideration, image manipulations of higher order statis-

ics could be made at the time of saccades, during fixational eye move-

ents, or during scene transitions – introducing subtle stimulus errors

nto the active stream of visual perception, while avoiding low-level

hanges in luminance, contrast, or spectra. This inclusion of paramet-

ic prediction errors would allow novel probes of the predictive cod-

ng principles of visual function ( Edwards et al., 2017 ; Friston, 2005 ;

etter et al., 2012 ). Other recent work has used wavelet resampling

o construct dynamic stimuli from a static natural scene by cyclically

ermuting the wavelet scales, hence tuning a static scene in and out

f its (preserved) noise context ( Koenig-Robert and VanRullen, 2013 ;

oenig-Robert et al., 2015 ). This approach allows cyclic presentation

f both expected and surprising semantic content (of the natural scene)

hile keeping the spectral properties of the stimulus constant (unlike

 traditional event related paradigm), thus probing cortical hierarchies

or their role in predictive coding and error responses ( Gordon et al.,

019a , 2017 , 2019b ). 
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